1.前端總線(FSB)頻率
前端總線(FSB)頻率(即總線頻率)是直接影響CPU與內存直接數據交換速度。有一條公式可以計算,即數據帶寬=(總線頻率×數據帶寬)/8,數據傳輸最大帶寬取決于所有同時傳輸的數據的寬度和傳輸頻率。比方,現在的支持64位的至強Nocona,前端總線是800MHz,按照公式,它的數據傳輸最大帶寬是6.4GB/秒。
外頻與前端總線(FSB)頻率的區別:前端總線的速度指的是數據傳輸的速度,外頻是CPU與主板之間同步運行的速度。也就是說,100MHz外頻特指數字脈沖信號在每秒鐘震蕩一千萬次;而100MHz前端總線指的是每秒鐘CPU可接受的數據傳輸量是100MHz×64bit÷8Byte/bit=800MB/s。
其實現在HyperTransport構架的出現,讓這種實際意義上的前端總線(FSB)頻率發生了變化。之前我們知道IA-32架構必須有三大重要的構件:內存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片組 Intel 7501、Intel7505芯片組,為雙至強處理器量身定做的,它們所包含的MCH為CPU提供了頻率為533MHz的前端總線,配合DDR內存,前端總線帶寬可達到4.3GB/秒。但隨著處理器性能不斷提高同時給系統架構帶來了很多問題。而HyperTransport構架不但解決了問題,而且更有效地提高了總線帶寬,比方AMD Opteron處理器,靈活的HyperTransport I/O總線體系結構讓它整合了內存控制器,使處理器不通過系統總線傳給芯片組而直接和內存交換數據。這樣的話,前端總線(FSB)頻率在AMD Opteron處理器就不知道從何鈣鵒恕?
2.主頻
主頻也叫時鐘頻率,單位是MHz,用來表示CPU的運算速度。CPU的主頻=外頻×倍頻系數。很多人認為主頻就決定著CPU的運行速度,這不僅是個片面的,而且對于服務器來講,這個認識也出現了偏差。至今,沒有一條確定的公式能夠實現主頻和實際的運算速度兩者之間的數值關系,即使是兩大處理器廠家Intel和AMD,在這點上也存在著很大的爭議,我們從Intel的產品的發展趨勢,可以看出Intel很注重加強自身主頻的發展。像其他的處理器廠家,有人曾經拿過一快1G的全美達來做比較,它的運行效率相當于2G的Intel處理器。
所以,CPU的主頻與CPU實際的運算能力是沒有直接關系的,主頻表示在CPU內數字脈沖信號震蕩的速度。在Intel的處理器產品中,我們也可以看到這樣的例子:1 GHz Itanium芯片能夠表現得差不多跟2.66 GHz Xeon/Opteron一樣快,或是1.5 GHz Itanium 2大約跟4 GHz Xeon/Opteron一樣快。CPU的運算速度還要看CPU的流水線的各方面的性能指標。
當然,主頻和實際的運算速度是有關的,只能說主頻僅僅是CPU性能表現的一個方面,而不代表CPU的整體性能。
3.外頻
外頻是CPU的基準頻率,單位也是MHz。CPU的外頻決定著整塊主板的運行速度。說白了,在臺式機中,我們所說的超頻,都是超CPU的外頻(當然一般情況下,CPU的倍頻都是被鎖住的)相信這點是很好理解的。但對于服務器CPU來講,超頻是絕對不允許的。前面說到CPU決定著主板的運行速度,兩者是同步運行的,如果把服務器CPU超頻了,改變了外頻,會產生異步運行,(臺式機很多主板都支持異步運行)這樣會造成整個服務器系統的不穩定。
目前的絕大部分電腦系統中外頻也是內存與主板之間的同步運行的速度,在這種方式下,可以理解為CPU的外頻直接與內存相連通,實現兩者間的同步運行狀態。外頻與前端總線(FSB)頻率很容易被混為一談,下面的前端總線介紹我們談談兩者的區別。
4、CPU的位和字長
位:在數字電路和電腦技術中采用二進制,代碼只有0和1,其中無論是 0或是1在CPU中都是 一位。
字長:電腦技術中對CPU在單位時間內(同一時間)能一次處理的二進制數的位數叫字長。所以能處理字長為8位數據的CPU通常就叫8位的CPU。同理 32位的CPU就能在單位時間內處理字長為32位的二進制數據。字節和字長的區別:由于常用的英文字符用8位二進制就可以表示,所以通常就將8位稱為一個字節。字長的長度是不固定的,對于不同的CPU、字長的長度也不一樣。8位的CPU一次只能處理一個字節,而32位的CPU一次就能處理4個字節,同理字長為64位的CPU一次可以處理8個字節。
5.倍頻系數
倍頻系數是指CPU主頻與外頻之間的相對比例關系。在相同的外頻下,倍頻越高CPU的頻率也越高。但實際上,在相同外頻的前提下,高倍頻的CPU本身意義并不大。這是因為CPU與系統之間數據傳輸速度是有限的,一味追求高倍頻而得到高主頻的CPU就會出現明顯的瓶頸效應CPU從系統中得到數據的極限速度不能夠滿足CPU運算的速度。一般除了工程樣版的Intel的CPU都是鎖了倍頻的,而AMD之前都沒有鎖。
6.緩存
緩存大小也是CPU的重要指標之一,而且緩存的結構和大小對CPU速度的影響非常大,CPU內緩存的運行頻率極高,一般是和處理器同頻運作,工作效率遠遠大于系統內存和硬盤。實際工作時,CPU往往需要重復讀取同樣的數據塊,而緩存容量的增大,可以大幅度提升CPU內部讀取數據的命中率,而不用再到內存或者硬盤上尋找,以此提高系統性能。但是由于CPU芯片面積和成本的因素來考慮,緩存都很小。
L1Cache(一級緩存)是CPU第一層高速緩存,分為數據緩存和指令緩存。內置的L1高速緩存的容量和結構對CPU的性能影響較大,不過高速緩沖存儲器均由靜態RAM組成,結構較復雜,在CPU管芯面積不能太大的情況下,L1級高速緩存的容量不可能做得太大。一般服務器CPU的L1緩存的容量通常在32256KB。
L2Cache(二級緩存)是CPU的第二層高速緩存,分內部和外部兩種芯片。內部的芯片二級緩存運行速度與主頻相同,而外部的二級緩存則只有主頻的一半。L2高速緩存容量也會影響CPU的性能,原則是越大越好,現在家庭用CPU容量最大的是512KB,而服務器和工作站上用CPU的L2高速緩存更高達256-1MB,有的高達2MB或者3MB。
L3Cache(三級緩存),分為兩種,早期的是外置,現在的都是內置的。而它的實際作用即是,L3緩存的應用可以進一步降低內存延遲,同時提升大數據量計算時處理器的性能。降低內存延遲和提升大數據量計算能力對游戲都很有幫助。而在服務器領域增加L3緩存在性能方面仍然有顯著的提升。比方具有較大 L3緩存的配置利用物理內存會更有效,故它比較慢的磁盤I/O子系統可以處理更多的數據請求。具有較大L3緩存的處理器提供更有效的文件系統緩存行為及較短消息和處理器隊列長度。
其實最早的L3緩存被應用在AMD發布的K6-III處理器上,當時的L3緩存受限于制造工藝,并沒有被集成進芯片內部,而是集成在主板上。在只能夠和系統總線頻率同步的L3緩存同主內存其實差不了多少。后來使用L3緩存的是英特爾為服務器市場所推出的Itanium處理器。接著就是P4EE和至強 MP。Intel還打算推出一款9MB L3緩存的Itanium2處理器,和以后24MB L3緩存的雙核心Itanium2處理器。
但基本上L3緩存對處理器的性能提高顯得不是很重要,比方配備1MB L3緩存的Xeon MP處理器卻仍然不是Opteron的對手,由此可見前端總線的增加,要比緩存增加帶來更有效的性能提升。
7.CPU擴展指令集
CPU依靠指令來計算和控制系統,每款CPU在設計時就規定了一系列與其硬件電路相配合的指令系統。指令的強弱也是CPU的重要指標,指令集是提高微處理器效率的最有效工具之一。從現階段的主流體系結構講,指令集可分為復雜指令集和精簡指令集兩部分,而從具體運用看,如Intel的 MMX(Multi Media Extended)、SSE、 SSE2(Streaming-Single instruction multiple data-Extensions 2)、SEE3和AMD的3DNow!等都是CPU的擴展指令集,分別增強了CPU的多媒體、圖形圖象和Internet等的處理能力。我們通常會把 CPU的擴展指令集稱為”CPU的指令集””。SSE3指令集也是目前規模最小的指令集,此前MMX包含有57條命令,SSE包含有50條命令,SSE2包含有144條命令,SSE3包含有13條命令。目前SSE3也是最先進的指令集,英特爾Prescott處理器已經支持SSE3指令集,AMD會在未來雙核心處理器當中加入對SSE3指令集的支持,全美達的處理器也將支持這一指令集。
8.CPU內核和I/O工作電壓
從586CPU開始,CPU的工作電壓分為內核電壓和I/O電壓兩種,通常CPU的核心電壓小于等于I/O電壓。其中內核電壓的大小是根據CPU的生產工藝而定,一般制作工藝越小,內核工作電壓越低;I/O電壓一般都在1.6~5V。低電壓能解決耗電過大和發熱過高的問題。
9.制造工藝
制造工藝的微米是指IC內電路與電路之間的距離。制造工藝的趨勢是向密集度愈高的方向發展。密度愈高的IC電路設計,意味著在同樣大小面積的IC中,可以擁有密度更高、功能更復雜的電路設計?,F在主要的180nm、130nm、90nm。最近官方已經表示有65nm的制造工藝了。
10.指令集
?。?)CISC指令集
CISC指令集,也稱為復雜指令集,英文名是CISC,(Complex Instruction Set Computer的縮寫)。在CISC微處理器中,程序的各條指令是按順序串行執行的,每條指令中的各個操作也是按順序串行執行的。順序執行的優點是控制簡單,但計算機各部分的利用率不高,執行速度慢。其實它是英特爾生產的x86系列(也就是IA-32架構)CPU及其兼容CPU,如AMD、VIA的。即使是現在新起的X86-64(也被成AMD64)都是屬于CISC的范疇。
要知道什么是指令集還要從當今的X86架構的CPU說起。X86指令集是Intel為其第一塊16位CPU(i8086)專門開發的,IBM1981 年推出的世界第一臺PC機中的CPUi8088(i8086簡化版)使用的也是X86指令,同時電腦中為提高浮點數據處理能力而增加了X87芯片,以后就將X86指令集和X87指令集統稱為X86指令集。
雖然隨著CPU技術的不斷發展,Intel陸續研制出更新型的i80386、i80486直到過去的PII至強、PIII至強、 Pentium 3,最后到今天的Pentium 4系列、至強(不包括至強Nocona),但為了保證電腦能繼續運行以往開發的各類應用程序以保護和繼承豐富的軟件資源,所以Intel公司所生產的所有 CPU仍然繼續使用X86指令集,所以它的CPU仍屬于X86系列。由于Intel X86系列及其兼容CPU(如AMD Athlon MP、)都使用X86指令集,所以就形成了今天龐大的X86系列及兼容CPU陣容。x86CPU目前主要有intel的服務器CPU和AMD的服務器 CPU兩類。
?。?)RISC指令集
RISC是英文Reduced Instruction Set Computing的縮寫,中文意思是精簡指令集。它是在CISC指令系統基礎上發展起來的,有人對CISC機進行測試表明,各種指令的使用頻度相當懸殊,最常使用的是一些比較簡單的指令,它們僅占指令總數的20%,但在程序中出現的頻度卻占80%。復雜的指令系統必然增加微處理器的復雜性,使處理器的研制時間長,成本高。并且復雜指令需要復雜的操作,必然會降低計算機的速度。基于上述原因,20世紀80年代RISC型CPU誕生了,相對于CISC型CPU
下一條:卸載網絡實名步步跟進